Diatonic Modes Ranked by “Brightness”

brighter

Lydian
Ionian
Mixolydian
Dorian
Aeolian
Phrygian
Locrian
darker
“Modes” (Inversions) of the Minor Triad

{0 3 7} = C minor \(_3 \)

{0 4 9} = A minor \(_4 \)

{0 5 8} = F minor \(_4 \)
TWO WAYS TO DEFINE BRIGHTNESS

1. Sum Brightness
2. Voice-Leading Brightness
Sum Brightness

Aeolian

\[
\begin{array}{cccccc}
0 & 2 & 3 & 5 & 7 & 8 & 10 \\
\end{array}
\]

= 35

Mixo.

\[
\begin{array}{cccccccc}
0 & 2 & 4 & 5 & 7 & 9 & 10 \\
\end{array}
\]

= 37

Lydian

\[
\begin{array}{cccccccc}
0 & 2 & 4 & 6 & 7 & 9 & 11 \\
\end{array}
\]

= 39

Phryg.

\[
\begin{array}{ccccccc}
0 & 1 & 3 & 5 & 7 & 8 & 10 \\
\end{array}
\]

= 34

Dorian

\[
\begin{array}{ccccccc}
0 & 2 & 3 & 5 & 7 & 9 & 10 \\
\end{array}
\]

= 36

Ionian

\[
\begin{array}{cccccccc}
0 & 2 & 4 & 5 & 7 & 9 & 11 \\
\end{array}
\]

= 38

Locrian

\[
\begin{array}{cccccccc}
0 & 1 & 3 & 5 & 6 & 8 & 10 \\
\end{array}
\]

= 33
Modes of the Minor Triad

{0 4 9} = A minor 6

Sum = 13

{0 5 8} = F minor 6

Sum = 13

{0 3 7} = C minor 6

Sum = 10

brighter

darker
Sum Brightness for Larger Scales

Harmonic Minor

<table>
<thead>
<tr>
<th></th>
<th>A:</th>
<th>B:</th>
<th>C:</th>
<th>D:</th>
<th>E:</th>
<th>F:</th>
<th>G:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

- **A**: Locrian #4 7
- **B**: Aeolian #7
- **C**: Locrian #6
- **D**: Ionian #5
- **E**: Dorian #4
- **F**: Phrygian #3
- **G**: Lydian #2

“Blues Scale”

<table>
<thead>
<tr>
<th></th>
<th>A:</th>
<th>B:</th>
<th>C:</th>
<th>D:</th>
<th>E:</th>
<th>F:</th>
<th>G:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

- **A**: E (31)
- **B**: F (31)
- **C**: C (31)
- **D**: A (25)
- **E**: B (25)

brighter

darker

D (37)

E (31)

F (31)

C (31)

A (25)

B (25)
Voice-Leading Brightness

In the voice leading from Locrian to Phrygian, all the motion is ascending. Therefore Phrygian is brighter.
Voice-Leading Brightness

A harmonic minor; sum = 36

A phrygian dominant; sum = 35
Voice-Leading Brightness

A harmonic minor; sum = 36

A phrygian dominant; sum = 35

The voice leading from Harmonic Minor to Phrygian Dominant lowers scale degrees 2 and 7, but it raises scale degree 3.

Contrary motion means the modes are incomparable.
Sum vs. VL Brightness for Harmonic Minor

Sum Brightness Graph

- **brighter**
 - G (40)
 - D (39)
 - E (37)
 - B (36) = Harmonic Minor
 - F (35) = Phrygian Dominant
 - C (34)
 - A (31)

- **darker**

VL Brightness Graph

- G (40)
- E (37)
- D (39)
- F (35)
- B (36)
- C (34)
- A (31)
Important Theoretical Questions

1. How does a brightness graph reflect a scale’s internal structure?

2. What is the relationship between sum brightness and voice-leading brightness?

3. How many different brightness graphs are possible?

4. What determines brightness comparisons between different set classes?
BRIGHTNESS GRAPHS & SCALE STRUCTURE

Voice Leading & Scalar Transposition
Mode Change

Scalar transposition & chromatic transposition nearly cancel out.
Scalar Interval Matrix

<table>
<thead>
<tr>
<th></th>
<th>Steps</th>
<th>Thirds</th>
<th>Fourths</th>
<th>Fifths</th>
<th>Sixths</th>
<th>Sevenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locrian</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Ionian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Dorian</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Phrygian</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Lydian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Mixolydian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Aeolian</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Scalar Interval Matrix

<table>
<thead>
<tr>
<th></th>
<th>Steps</th>
<th>Thirds</th>
<th>Fourths</th>
<th>Fifths</th>
<th>Sixths</th>
<th>Sevenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locrian</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Ionian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Dorian</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Phrygian</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Lydian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Mixolydian</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Aeolian</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Scalar Interval Matrix

Ionian to Mixolydian

\[t_4 = (+7,+7,+7,+7,+7,+7,+6) \]
\[+ T_{-7} = (-7,-7,-7,-7,-7,-7,-7) \]
\[= (0,0,0,0,0,0,-1) \]

\[
\begin{array}{cccccccc}
\text{Locrian} & 0 & 1 & 3 & 5 & 6 & 8 & 10 \\
\text{Ionian} & 0 & 2 & 4 & 5 & 7 & 9 & 11 \\
\text{Dorian} & 0 & 2 & 3 & 5 & 7 & 9 & 10 \\
\text{Phrygian} & 0 & 1 & 3 & 5 & 7 & 8 & 10 \\
\text{Lydian} & 0 & 2 & 4 & 6 & 7 & 9 & 11 \\
\text{Mixolydian} & 0 & 2 & 4 & 5 & 7 & 9 & 10 \\
\text{Aeolian} & 0 & 2 & 3 & 5 & 7 & 8 & 10 \\
\end{array}
\]
Scalar Interval Matrix

Locrian to Lydian

\[t_4 = (+6,+7,+7,+7,+7,+7,+7) \]

\[+ T_{-6} = (-6,-6,-6,-6,-6,-6,-6) \]

\[= (0,+1,+1,+1,+1,+1,+1) \]

<table>
<thead>
<tr>
<th></th>
<th>Locrian</th>
<th>Ionian</th>
<th>Dorian</th>
<th>Phrygian</th>
<th>Lydian</th>
<th>Mixolydian</th>
<th>Aeolian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifths</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
Scalar Interval Matrix

Harmonic Minor B to F

\[t_4 = (+7, +6, +8, +7, +7, +7, +6) \]
\[+ T_{-7} = (-7, -7, -7, -7, -7, -7, -7) \]
\[= (0, -1, +1, 0, 0, 0, -1) \]
SUM vs. VOICE-LEADING

Scales with a brightness “semiorder”
VL vs. Sum Brightness

Voice Leading Brightness \Rightarrow Sum Brightness
VL vs. Sum Brightness

Voice Leading
Brightness

Sum
Brightness

🚫
VL vs. Sum Brightness

Voice Leading Brightness

Sum Brightness

Harmonic Minor: Many VL ties although all sums are different.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

- A: 31
- B: 36
- C: 34
- D: 39
- E: 37
- F: 35
- G: 40
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

Difference = 1

not comparable
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

Difference = 1

not comparable
Semiordered Scales

Melodic Minor
Voice-Leading Brightness Graph:

Difference = 1

not comparable
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

\[
\begin{align*}
& \text{D (40)} \\
& \text{E (38)} \\
& \text{F (36)} \\
& \text{G (34)} \\
& \text{C (35)} \\
& \text{B (37)} \\
& \text{A (32)}
\end{align*}
\]

\text{Difference} = 1

not comparable
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

Difference = 2

comparable: E < D
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

Difference = 2

comparable: $F < E$
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

Difference = 3

comparable: C < E
Semiordered Scales

Melodic Minor

Voice-Leading Brightness Graph:

- Difference = 2

comparable: C < B
Semiordered Scales

\[\delta : \text{The largest sum difference between incomparable modes} \]

\[\varepsilon : \text{The smallest sum difference between comparable modes} \]
Semiordered Scales

Melodic Minor

$\delta = 1; \varepsilon = 2$
Semiordered Scales

VL Brightness for Melodic Minor & Diatonic Modes Together

Mel. Min. C (Phrygian #6) ← Mel. Min. B (Melodic Minor)

darker ← brighter
Don Giovanni Overture
Don Giovanni Overture

Melodic Minor & Diatonic

- Mel. Min. G (Locrian #2)
- Mel. Min. F (Aeolian #3)
- Mel. Min. E (Acoustic)
- Mel. Min. A (Locrian #4)
- Mel. Min. C (Phrygian #6)
- Mel. Min. B (Melodic Minor)

darker → brighter
OPTIC Spaces for Trichords
THE UPSHOT:

A scale’s structure depends only on its location in this space.

(The space partitions into regions of constant structure.)

(“Structure” includes the VL brightness graph, δ/ε, and everything they imply, e.g. specific vs. generic intervals, well-formedness, and so on.)
All Possible Trichord Brightness Graphs

Type 1a

C

B

A

Type 1b

B

C

A

Type 2

B → C

A

Type 2 (inverted)

A → B

C
Modes of (037)

{0 5 8} 13
“second inversion”

{0 3 7} 10
“root position”

{0 4 9} 13
“first inversion”

Defining Inequalities

\[x_1 - x_0 < x_2 - x_1 \]

pitches 0 3 7 (12)

intervals 3 < 4
PT Space for Trichords

Inequality #1
\[x_1 - x_0 < x_2 - x_1 \]

Inequality #2
\[x_1 - x_0 < 12 + x_0 - x_2 \]

Inequality #3
\[x_2 - x_1 < 12 + x_0 - x_2 \]
PT Space for Trichords

Graph Type 1a
- C
- B
- A

Graph Type 1b
- B
- C
- A

Graph Type 2
- B
- C
- A

Graph Type 2 (inverted)
- A
- B
- C
Graph of Trichord Space
PT Space for Trichords
PT Space for Trichords
PT Space for Trichords

Color indicates δ/ε.
Red shows $\delta/\varepsilon = 0$.
Purple shows $\delta/\varepsilon = 1$.
PT Space for Trichords
mapped onto S^1 (a circle)
PT Space for Tetrachords
mapped onto S^2 (a sphere)

Color indicates δ/ε. Red shows $\delta/\varepsilon = 0$. Blue shows $\delta/\varepsilon = 1$. As δ/ε grows without bound, the color approaches violet.
Modes of Harmonic Minor \((\delta=2; \varepsilon=3)\)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Chords</th>
<th>Notes</th>
<th>Mode Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1 3 4 6 8 9</td>
<td>0 1 3 4 6 8 9</td>
<td>Locrian 4 #7</td>
</tr>
<tr>
<td>B</td>
<td>0 2 3 5 7 8 11</td>
<td>0 2 3 5 7 8 11</td>
<td>Aeolian #7</td>
</tr>
<tr>
<td>C</td>
<td>0 1 3 5 6 9 10</td>
<td>0 1 3 5 6 9 10</td>
<td>Locrian 6</td>
</tr>
<tr>
<td>D</td>
<td>0 2 4 5 8 9 11</td>
<td>0 2 4 5 8 9 11</td>
<td>Ionian 5</td>
</tr>
<tr>
<td>E</td>
<td>0 2 3 6 7 9 10</td>
<td>0 2 3 6 7 9 10</td>
<td>Dorian 4</td>
</tr>
<tr>
<td>F</td>
<td>0 1 4 5 7 8 10</td>
<td>0 1 4 5 7 8 10</td>
<td>Phrygian 3</td>
</tr>
<tr>
<td>G</td>
<td>0 3 4 6 7 9 11</td>
<td>0 3 4 6 7 9 11</td>
<td>Lydian 2</td>
</tr>
</tbody>
</table>

Mode (sum)

darker brighter
Modes of Harmonic Minor \((\delta=2; \varepsilon=3)\)

Mode (sum)

A (31) \(\rightarrow\) C (34) \(\rightarrow\) F (35) \(\rightarrow\) B (36) \(\rightarrow\) E (37) \(\rightarrow\) D (39) \(\rightarrow\) G (40)

darker \(\rightarrow\) brighter

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

- A: Locrian \(b4\); \#7
- B: Aeolian \#7
- C: Locrian \#6
- D: Ionian \#5
- E: Dorian \#4
- F: Phrygian \#3
- G: Lydian \#2

